Informations - 5.0 out of 5 based on 1 vote

    Για εμάς

    Στηριζόμενη στα επιτεύγματα της πανεπιστημιακής ερευνητικής δραστηριότητας μιας 25ετίας, η εταιρεία Colorlite Kft. ανέπτυξε γυαλιά για τη διόρθωση της δυσχρωματοψίας για όσους πάσχουν από δυσχρωματοψία και αχρωματοψία. Βάσει των αποτελεσμάτων των ατομικών εξετάσεων χρωματικής όρασης των πασχόντων από δυσχρωματοψία συνιστούμε προσωποποιημένα γυαλιά διόρθωσης της δυσχρωματοψίας ώστε να ανακαλύψετε νέες, μέχρι τώρα άγνωστες χρωματικές αποχρώσεις.


    Συχνές ερωτήσεις

    1. Γιατί έχει σημασία να διορθωθεί η δυσχρωματοψία;

    Τα χρώματα είναι σημαντικά για μας για πολλούς λόγους. Επηρεάζουν τη διάθεσή μας, μας χαρίζουν αισθητική εμπειρία και εμπεριέχουν πληροφορίες. Σε κάθε βήμα συναντάμε χρωματικά κωδικοποιημένες πληροφορίες. Όσοι πάσχουν από δυσχρωματοψία αποκλείονται από πολλά επαγγέλματα και υφίστανται σχεδόν παντού μειονεκτήματα. Με τους φακούς που διορθώνουν τη χρωματική όραση παρέχουμε σανίδα σωτηρίας στους πάσχοντες από δυσχρωματοψία για να προσανατολίζονται στον έγχρωμο κόσμο.

    2. Σε τι διαφέρει το τεστ δυσχρωματοψίας της Colorlite από τα άλλα τεστ χρωματικής όρασης;

    Το τεστ της χρωματικής όρασης που εφαρμόζουμε προσδιορίζει τον τύπο και τη σοβαρότητα της δυσχρωματοψίας και κατά τη επαναμέτρηση με διορθωτικούς φακούς βοηθάει στην επιλογή του καλύτερου διορθωτικού φακού. Το τεστ είναι γρήγορο, αντικειμενικό και απλό, όπως ακριβώς η συνηθισμένη εξέταση οπτικής οξύτητας.

    3. Μπορεί να θεραπευτεί η δυσχρωματοψία;

    Η δυσχρωματοψία δεν θεραπεύεται, αλλά – όπως στην περίπτωση των κανονικών γυαλιών – με ειδικούς διορθωτικούς φακούς η χρωματική όραση μπορεί να βελτιωθεί.

    4. Τι σημαίνει δυσχρωματοψία τύπου «protan» ή «deutan»

    Αφού πρόκειται για κληρονομική κατάσταση, έχει πολλές διαφορετικές γενετικές μορφές. Οι συχνότερες είναι το σφάλμα των κωνίων L και M (με ευαισθησία στο μεγάλο και μεσαίο μήκος κύματος, αντιστοίχως), οι οποίες ονομάζονται Πρωτανωμαλία, Πρωτανοπία και Δευτερανωμαλία, Δευτερανοπία ή συλλήβδην «Protan» και «Deutan». Για λεπτομέρειες δείτε το τμήμα Επιστημονικό Υπόβαθρο.


    Επιστημονικό Υπόβαθρο

    Human color vision

    Normal human color perception can distinguish between several million different colors and the eye is capable of perceiving color in the visual wavelength range between 380 and 780 nanometers. In the human eye there are more than 6 million receptors called cones, which sense the color of the light reaching the eye. Based on the sensitivity range of their photopigments three different kinds of cones can be identified. Their names are Protos or L cone, (sensitive to the red colors: Long wavelengths) Deuteros or M cone (sensitive to the green colors: Medium wavelengths) and Tritos or S cone (sensitive to the blue colors: Short wavelengths). The figure below shows the sensitivity functions of these receptors.

    Figure 1. Normal receptor sensitivity functions in arbitrary units over wavelength

    Inherited Colour Vision Deficiency and color blindness

    Color vision ability is essentially the ability of the observer to identify the colors (color identification) and the ability to distinguish between slightly different colors (color discrimination). Normal color vision is defined as the color vision ability of an "average" observer. Color vision deficiency and color blindness occurs when one or more of the cone's sensitivity functions differ significantly from the above shown normal ones. This results in the alteration (reduction) of color identification and color discrimination ability. Based on their genetic origin and characteristics several types of color vision deficiency and color blindness can be distinguished. The most common ones occur in the red and/or green region called Protanomaly, Protanopy (in short “Protan”) or Deuteranomaly, Deuteranopy (in short “Deutan”), much more seldom the blue region is defective (Tritanomaly) and only in extremely rare occasions all the three receptors are damaged or missing (Achromatopsy). The red-green color vision deficiency / color blindness is inherited genetically with the "X" chromosomes; consequently it is much more common among males than females. Women have two X-chromosomes and if one of them carries the color normal genetic information it suppresses the defective information in the other one. Men do not have this duplication; therefore if a man inherits a defective X chromosome from his mother (who is most likely not color vision deficient / color blind) he is going to be color vision deficient or color blind. Approximately 8 % of Caucasian men and 0.4-0.5 % of women are red-green color vision deficient. Inherited blue color vision deficiency is extremely rare, approximately 0.05%. For many years it was taught that color vision deficient receptors differ from normal ones due to their insufficient sensitivity. However, recent scientific publications are describing color vision deficiency as a consequence of the change in the sensitivity range of the receptors ('parallel shift'). The Colorlite color vision correction method is based on this theory.

    Color vision enhancement

    Colorlite has designed and manufactures color vision correction lenses with a special coating, which is designed on such way that enhances the individual's color vision. The correction can be applied for each type of red-green color vision deficiencies and color blindness, even in the most severe ones.

    Figure 2 below shows the cone sensitivity functions of a Deuteranomalous subject (someone whose Middle wavelength sensing receptor sensitivity is shifted towards the Long wavelengths.) Due to the shift, the difference between the L and M sensitivity functions decreases; therefore the subject has difficulty in differentiating between green and yellow shades.

    Figure 2. L, M, and S cone sensitivity functions of a normal and a Deuteranomalous subject. M and S cones fully overlap; the difference is in the L cone sensitivity.

    Figure 3. A filter suitable for the color vision deficient case shown in Figure 1

    To compensate this defect a specially designed filter can be used. The requirement for this filter is to shift the Middle wavelength intensity of the light reaching the eye in such a way, that the color vision deficient receptors sensing the shifted spectrum send the same information to the visual nervous system, as the normal receptors would do sensing the unaltered incoming light. The filter has to be effective in the middle wavelength area where the deficiency is, and cause the least possible interference in the Short and Long wavelength range where the receptors of the color vision deficient subject are normal. A suitable filter characteristic for the case shown on Figure 2 is shown in Figure 3.

    As a result, the visual information becomes much closer to normal color vision than it was before. When considering the adaptation ability of the individual cones (e.g. the ability of the receptors to increase their sensitivity when there is low incoming signal and decrease their sensitivity when the incoming signal is high) from the color vision prospective this can be interpreted as if the sensitivity function of the receptors were really shifted. Figure 4 shows clearly that the filter shifted the defective Medium wavelength cone sensitivity very close to the normal one, left the Short wavelength sensitivity function untouched and caused a very small deviation in the Long wavelength sensitivities. The subject's color vision abilities have been restored very close to the normal.

    Figure 4. Effect of the filter shown in Figure 3.

    Color vision testing and diagnosis of color vision deficiency and color blindness

    The traditional diagnostic tests, including different pseudo-isochromatic tests (Ishihara, Dvorin, Velhagen, etc.), yarn test, lantern test, etc. can only detect whether a subject is red-green color vision deficient or not. The type and, to some degree, the severity of the deficiency can be measured using an equipment called anomaloscope. Nowadays, the most advanced anomaloscopes are capable of detecting not only red-green, but blue color vision deficiency as well. Colorlite's color vision not only distinguishes between the red-green and other, rare types of color blindness, but also provides a quantitative estimate on the severity of red-green color vision deficiency and color blindness. The more accurate diagnosis of color vision deficiency and color blindness, permits to suggest the best color vision corrective lens. The easy-to-use test simply recommends lenses for color blind subjects, classified by our thorough research of several years and it measures the efficiency and the level of improvement.


    Επιστημονικά Δημοσιεύματα

    Επιστημονικά δημοσιεύματα και ευρεσιτεχνίες των εφευρετών και της πανεπιστημιακής ομάδας εργασίας τους σχετικά με το τεστ χρωματικής όρασης και τα γυαλιά διόρθωσης της χρωματικής όρασης.

    Publications about Colorlite color blindness correction and Colorlite test

    1. Áron Szélig, Klára Wenzel: Measuring threshold of sensitivity on coloured monitor. Lux et Colour Vespremiensis. 117 p. Budapest University of Technology and Economics, 2016. pp. 95-98. (ISBN:978-963-313-238-8)
    2. Samu Krisztián, Wenzel Klára, Urbin Ágnes, Kovács Sándor, Gere Attila, Kókai Zoltán, Sipos László: Comparison of chromatic contrast sensitivity of colour vision deficient people and normal colour observers. Lux et Color Vespremiensis. 117 p. Budapest University of Technology and Economics, 2016. pp. 87-90. (ISBN:978-963-313-238-8)
    3. Wenzel Klára, Urbin Ágnes: Measurement of the effect of chromaticity and intensity on colour representation parameters of a CRT display Recent innovation in Mechatronics, Paper 2437/208327. 4 p. (2015)
    4. Wenzel Klára, Urbin Ágnes: Colour vision under different states of adaptation. Proceedings of the 28th Session of CIE - Vol.1., International Commission on Illumination (CIE), 2015. p. 1012. 9 p. (ISBN:978-3-902842-55-8)
    5. Dr Wenzel Klára, Urbin Ágnes: Improving colour vision, Lumen V4 Conference, Budapest: MEE Lighting Society, 2014. pp. 427-438. (ISBN:978-963-9299-21-4)
    6. Urbin Ágnes, Wenzel Klára: Colour identification with coloured lenses, Colour and colorimetric: Multidisciplinary Contribution. 428 p. Vol. IX B., Multidisciplinary Contribution(ISBN:978-88-387-6242-0)
    7. Wenzel Klára, Langer Ingrid, Urbin Ágnes, Bencze Kinga, Kassai Virág: Color vision correction glasses. The Hungarian Society for the Gynaecology 2013 Congress.12.13.2013.
    8. Zsuzsanna Veres, Zoltán Németh, Ádám Veres, Klára Wenzel, Krisztián Samu: New Method for Examination of Colour Discrimination Using Anomaloscopes. Proceedings of CERiS'13 - Workshop on Cognitive and Eto-Robotics in iSpace. 162 p. (ISBN:978-963-313-086-5)
    9. K Wenzel, K Samu: Pseudo-Isochromatic Plates to Measure Colour Discrimination. Acta Polytechnica Hungarica9:(2) pp. 185-195. (2012)
    10. K Wenzel, I Langer, V Kassai, K Bencze: Colour preferences of people with normal and anomalous colour vision. International Interdisciplinary Conference on Colour and Pattern Harmony. 2012.06.13.pp. 79-80.
    11. K Wenzel, K Ladunga, K Samu, I Langer, F Szőke: Pseudo-Isochromatic Plates for Measuring the Ability to Discriminate Colours, 27th Session of the CIE. 2011.07.15.p. 85.
    12. Klara Wenzel: Coloured lights in nature. LUMEN V4, Conference of the Visegrad, Group on Lighting Technology. 2010.06.25.pp. 5-8.
    13. Klara Wenzel, Karoly Ladunga, Krisztian Samu, Ingrid Langer: Pseudo-Isochromatic Plates to Measure Colour Discrimination. 21st symposium of the International Colour Vision Society. 2010.07.05.pp. 85-86.
    14. Wenzel Klára: Colour vision effects in the art. XXXIIIth Colouristic Symposium. 2010.10.13.pp. 11-12.
    15. Klára Wenzel, Ingrid Langer, Károly Ladunga: Developing and testing a new colour vision test, Measuring Colour Perception by Monochromatic Colours. 2008: Proceedings of Sixth Conference on Mechanical Engineering. 2008. pp. 5-8. (ISBN:978-963-420-947-8)
    16. Wenzel K, Samu K, Langer I.: Colour Trainer Book for color vision deficient people. VII. Lux et Colour Vespremiensis Conference. 2008.11.06 VEAB, Paper 5.
    17. Samu K, Wenzel K: Test for colour deficiency with pseudo-isochromatic plates on a CRT monitor. XXIXth Colouristic Symposium. 75 p. 2003. Paper 14. (ISBN:963 9319 28 7)
    18. Samu K, Wenzel K: Irregular types of colour vision deficiency. II. Lux et Colour Vespremiensis Conference. 2003.10.16 MTA VEAB, Paper 6.
    19. Ábrahám Gy, Kovács G, Kucsera I, Wenzel G: Patent in Method for correcting colour deficiency, the filter used in the method and method for providing the filter AU3398801, 2000. P0000531, Hungary
    20. K Ladunga, K Wenzel, K Samu: Measurement of colour and luminance CTF on CRT in colour defectives and normal colour vision subjects. Periodica Polytechnica Mechanical Engineering 45: 103-108. (2001)
    21. Kovacs G, Kucsera I, Abraham G, Wenzel K: Enhancing colour representation for anomalous trichromats on CRT monitors. Colour Research and Applications 26:(S1) pp. 73-S276. (2001)
    22. K Samu, K Wenzel, K Ladunga: Colour and luminance contrast sensitivity function of people with anomalous colour vision. Proc. SPIE, Vol. 4421, 351 (2002). Rochester NY: pp. 351-354.
    23. Samu K, Ladunga K, Wenzel K: Reduced colour contrast sensitivity in colour vision deficiency. XXVIII. Symposium on calorimetry. (MKE), pp. 53-58.
    24. Ábrahám Gy, Kovács G, Kucsera I, Wenzel K: Instrument for diagnosis of colour deficiency. Proceedings of Second Conference on Mechanical Engineering. 811 p. 2000.05.26. Springer Medical Publishing Ltd., 2000. pp. 706-710. (ISBN:963-699-117-0)
    25. Gábor Kovács, György Ábrahám, Itala Kucsera, Klára Wenzel: Improving colour vision for colour deficient patients on video displays. Topical Meeting on Visual Science and its Applications. 2000.02.14. Massachusetts: Optical Society of America (OSA), 2000. pp. 333-336. (ISBN:1-55752-624-9)
    26. K Wenzel, K Ladunga Gy Abraham, G Kovacs, I Kucsera, K Samu: Measuring Colour Resolution of the Eye by Using Colour Monitor. Proceedings of Colour and Visual Scales Conference, 2000.04.13. London: Paper 15.
    27. Kucsera I, Wenzel K, Ábrahám Gy, Kovács G: Mathematical modelling of functional colour vision Proc. of Colour and Visual Scales Conference. London, 2000 National Physical Laboratory (NPL), pp. 1-4.
    28. Kucsera I, Wenzel K, Ábrahám Gy, Kovács G: Modelling colour sensation of people with normal colour vision and anomalous trichromats. ISCC 2nd Panchromatic Conference. Savannah, US 2000.02.21.pp. 59-63.
    29. Wenzel K, Ladunga K, Ábrahám Gy, Kovács G, Kucsera I: Measuring colour resolution of the eye by using colour monitors. Proc. of Colour and Visual Scales Conference. 2000 National Physical Laboratory (NPL), pp. 1-4.
    30. Wenzel K, Ladunga K, Ábrahám Gy, Kovács G, Kucsera I: Measuring colour adaptation on monitors. ISCC 2nd Panchromatic Conference. Savannah, USA, 2000.02.21.pp. 55-59.
    31. Wenzel K, Ladunga K, Ábrahám Gy, Kovács G, Kucsera I, Samu K: Measuring Colour Resolution of the Eye by Using Colour Monitor. Conference on Colour and Visual Scales, CIE. London, UK, 2000pp. 1-5.
    32. Ábrahám Gy, Kucsera I, Kovács G, Wenzel K: Checking the diagnosis of colour deficiency by colour mixing. CIE Symposium'99 75 years of CIE Photometry.1999.10.02. pp. 25/1-25/5.
    33. Ábrahám Gy, Wenzel K, Kucsera I: New method for assessing the spectral sensitivity curves of the human eye. Proc. of 24th CIE x017-2000 Session. Warsaw, Poland, 1999pp. 119-123.
    34. Kucsera I, Ábrahám Gy, Wenzel K, Kovács G: Approximation of human cone responsivity curves with low parametric mathematical functions. CIE Symposium'99 75 years of CIE Photometry. Budapest, Hungary 1999.10.02.pp. 28/1-28/5.
    35. Kucsera I, Ábrahám Gy, Wenzel K, Kovács G: Classification of colour deficiency by colour identification measurements. XXth Conference of the International Colour Vision Society. Göttingen, Germany, 1999pp. 1-4.
    36. Ladunga K, Wenzel K, Ábrahám Gy: Interactive Computer Aided Method for Test Colour Vision. 2nd International Conference of PhD Students, 1999 Miskolc University, Hungary pp. 199-204.
    37. Ladunga K, Wenzel K, Ábrahám G: New Computer Controlled Colour Vision Test. Proc. of Photonics Device and Systems. Bellingham: International Society for Optical Engineering (SPIE), 1999. pp. 501-505.(ISBN:0-8194-3641-0)
    38. Wenzel K, Ábrahám Gy, Ladunga K: Patent about Measuring Colour vision discrimination of colour vision deficiency. P9901241, 1999, Hungary
    39. Ladunga K., Kucsera I., Wenzel K.: If I were colorblind, Proceedings of CIE Symposium. CIE x018, Budapest 1999. 148-151. p.
    40. Wenzel K, Ábrahám Gy, Kucsera I, Kovács G: Measurements of colour adaptation under different coloured light. CIE Symposium'99 75 years of CIE Photometry. Budapest 1999.10.02.p. 4.
    41. Wenzel K, Ábrahám Gy, Kovács G, Kucsera I: Colour system for characterization of anomalous trichromacy: XXth Conference of the International Colour Vision Society. Göttingen, Germany, 1999pp. 25-28.
    42. Ábrahám Gy, Wenzel K: Patent about Method and Apparatus for Determining Spectral Sensitivity Parameters of Colour-Sensitive Receptors in the Eye, US5801808, 1995. HU95/00009. 
    43. Ábrahám Gy, Wenzel K: Correction of Colour deficiency. SOE '97 - XI Congress of the European Society of Ophthalmology,Vol. 1-2. Budapest,1997.06.05. Bologna: Monduzzi Editoriale, 1997. pp. 849-851. (ISBN:88-323-0601-8)
    44. Ábrahám Gy, Wenzel K: Method for the Correction of Colour Problems of the Human Eye. Proc. of VDI 6. Internationales Kolloquium Feinwerktechnik. Budapest, Hungary, 1997pp. 1-7.
    45. Wenzel K, Ábrahám Gy: A new theory of defective colour vision. Proc. of VDI 6. Internationales Kolloquium Feinwerktechnik. Budapest, Hungary, 1997pp. 11-14.
    46. Wenzel K, Ábrahám Gy, Szappanos J: Correcting of colour deficiencies. Colour 93: Proceedings of the 7th congress of the International Colour Association: Vol. B: Science and technology: contributed papers and posters. 340 p. (ISBN:963-420-307-8; 963-420-305-1)
    47. Alessandro Pensosi: Effetti dell'illuminazione artificiale su soggetti discromatici ed utilizzo di filtri ColorLite, Università degli Studi di Napoli, M44/198, 2018
    48. Francesca Di Rubbo: Valutazione dei Filtri Colorlite per la compensazione del deficit nella visione dei colori, Università degli Studi di Napoli, M44/403, 2017
    49. Giulia Zanin: Le discromatopsie: valutazione dei filtri ColorLite, Università degli Studi di Padova, Dipartimento di Fisica e Astronomia, Corso di Laurea Triennale in Ottica e Optometria, Matricola: 1102822, 2017
    50. Urbin Ágnes, Nagy, Balázs Vince, Wenzel Klára: Chromatic discrimination under different states of chromatic adaptation, Proceedings of the Conference on "Smarter Lighting for Better Life" at the CIE Midterm Meeting 2017: Commission Internationale de l'Eclairage, (2017) Paper: 10.25039/x44.2017.PP02, 10 p.
    51. Wenzel Klára, Urbin, Ágnes: Color blind people in the traffic, ELEKTROTECHNIKA 3-4 pp. 22-23. (2017)
    52. Klara Wenzel: Regular Wear of Coloured Glasses Improved the Symptoms of Colour Vision Deficiency, International Journal of Innovative Studies in Sciences and Engineering Technology (IJISSET), ISSN 2455-4863, www.ijisset.org Volume: 6 Issue: 5 | 2020, IJISSET Page 46 Volume: 6 Issue: 5 | 2020, IJISSET Page 46
    53. Wenzel Klára, Urbin Ágnes, Langer Ingrid, Samu Krisztián: Correcting anomalous color vision with glasses, Magyar Tudomány 182(2021)9, 1194–1202, DOI: 10.1556/2065.182.2021.9.4
    54. Wenzel Klára; Ladunga Károly; Samu Krisztián: COLOR VISION TEST, Budapest, Magyarország : Colorlite Kft (2018), 44 p. ISBN: 9786150033839
    55. Wenzel K, Samu K, Langer I: A color naming exercise book for color vision deficient people (Színtani gyakorlókönyv színtévesztőknek), In: VII. Lux et Color Vespremiensis Konferencia, Veszprém, Magyarország : VEAB, (2008) Paper: 5
    56. Wenzel K, Samu K, Langer I: A color naming exercise book for color vision deficient people (Színtani gyakorlókönyv színtévesztőknek): alapfokú gyakorlókönyv, Budapest, Magyarország : Colorlite Kft (2009) , 42 p. ISBN: 9789630666985
    57. Wenzel Klára, Samu Krisztián: Improving the color identification of color vision deficient people (Színtévesztők szín identifikációs képességének fejlesztése) In: Kolorisztikai Szimpozium, (2009) pp. 41-42., 2 p.
    58. Wenzel K, Samu K, Langer I: Testbook for the colour vision deficient - basic tests, Budapest, Magyarország : Colorlite Kft (2013) , 42 p. ISBN: 9789630825702
    59. Sipos László, Gere Attila, Kókai Zoltán, Nyitrai Ákos, Kovács Sándor, Urbin Ágnes, Samu Krisztián, Wenzel Klára: Eye-Tracker Analysis of the Contrast Sensitivity of Anomalous and Normal Trichromats: A Loglinear Examination with Landolt-C Figures, APPLIED SCIENCES-BASEL 11 : 7 pp. 1-18. Paper: 3200 , 18 p. (2021)

    Ιστορικό εταιρείας

    Η ιστορία της εταιρείας μας χρονολογείται  πριν από 25 χρόνια. Εκείνη την εποχή, δύο καθηγητές από το Τεχνολογικό Πανεπιστήμιο της Βουδαπέστης ξεκίνησαν την έρευνα για την δυσχρωματοψία.

    Σύντομα συνειδητοποίησαν ότι η πιο συνηθισμένη δυσχρωματοψία αυτή του  ερυθρού-πράσινου χρώματος, η κληρονομική γενετική διαταραχή μπορεί να διορθωθεί με ειδικά χρωματιστά γυαλιά. Ένα νέο μαθηματικό μοντέλο ανεπάρκειας έγχρωμης όρασης  και ολόκληρης της σειράς των μεθόδων μέτρησης της έγχρωμης όρασης έχουν αναπτυχθεί. Το 1993, οι επιστήμονες κατοχυρώθηκαν με δίπλωμα ευρεσιτεχνίας για τις διαγνωστικές δοκιμές χρωμάτων και τα γυαλιά διόρθωσης. Το 1998, με την υποστήριξη του πρώτου Αμερικανικού-Ουγγρικού Ταμείου, ιδρύθηκε μια κεφαλαιουχική εταιρεία επενδύσεων, Coloryte Inc.

    Οι εφευρέτες στην Coloryte Inc. είχαν μια μεγάλη ευκαιρία να συνεχίσουν την έρευνα. Οι επιτυχείς κλινικές δοκιμές (CRO) απέδειξαν την ασφάλεια και την αποτελεσματικότητα του συστήματος διάγνωσης και διόρθωσης Coloryte Color Vision, το οποίο δημοσιεύθηκε πολλές φορές σε επιστημονικές δημοσιεύσεις και έλαβε επίσης την έγκριση του FDA, αλλά η εντολή του αμερικανικού ουγγρικού ταμείου έληξε στο τέλος του 2003 και δεν μπόρεσε να συνεχίσει την υποστήριξη της Coloryte Inc., η οποία εισήχθη μόνο στην αγορά και η εταιρεία τελικά έκλεισε.

    Εκείνη την εποχή δημιουργήθηκε μια νέα εταιρεία Colorlite Ltd. για να συνεχίσει την κληρονομιά αυτής της μνημειώδους έρευνας. Εν τω μεταξύ, οι φακοί Colorlite Vision Diagnostic και Enhancement έχουν αναπτυχθεί περαιτέρω και χιλιάδες άτομα με ανεπαρκή έγχρωμη όραση  ερευνήθηκαν τα τελευταία χρόνια.

    Prof Wenzel1

    Professor Klára Wenzel, D.Sc.
    Επικεφαλής επιστημονική υπεύθυνη, συνιδρυτής & εφευρέτης

    Η καθηγήτρια Klara Wenzel, που διδάσκει  στο Τεχνικό Πανεπιστήμιο της Βουδαπέστης, ήταν ο κύριος εφευρέτης των γυαλιών διόρθωσης της όρασης χρώματος και μια νέα διαγνωστική συσκευή χρωμάτων οράσεως, η οποία αναπτύχθηκε με βάση το μαθηματικό μοντέλο της έλλειψης χρωμάτων. Τα σημερινά προϊόντα της Colorlite είναι τα αποτελέσματα των 25 χρόνων έρευνας και ανάπτυξης της.


    Συνεργασία Samsung

    Ως αποτέλεσμα της συνεργασίας μεταξύ της Colorlite, της Samsung και του Τεχνικού Πανεπιστημίου της Βουδαπέστης, αναπτύχθηκε μια νέα εφαρμογή - η οποία αποκαλείται SeeColors. Η εφαρμογή υιοθέτησε τη δοκιμή χρωματισμού Colorlite, έτσι ώστε να μπορεί να χρησιμοποιηθεί ως εφαρμογή σε οποιοδήποτε κινητό τηλέφωνο Samsung Galaxy 6 και παραπάνω. Οι χρήστες με προβλήματα δυσχρωματοψίας απλά πρέπει να συνδέσουν το κινητό και την τηλεόρασή τους μέσω Wi-Fi και η οθόνη θα αλλάξει αυτόματα τη ρύθμιση χρώματος ανάλογα με το αποτέλεσμα της δοκιμής για να τους προσφέρει καλύτερη αντίληψη χρώματος. Για περισσότερες πληροφορίες κάντε κλικ εδώ:The Wall Street Journal article about SeeColors application.

    Pin It
    1 1 1 1 1 1 1 1 1 1 Rating 5.00 (1 Vote)

    Σχόλια στο Facebook

    Share on Myspace
    © 2024 Colorlite Ltd. Με επιφύλαξη παντός δικαιώματος